

Gear design analysis

Dr Hengan Ou

Coates B80a h.ou@nottingham.ac.uk

Gears related Lecture sessions

• **Introduction to gears Gears 1**

- Functions & types
- Gear terminologies & conjugate action
- Involute profile, fundamental equations, tooth system

• **Gear trains and their applications Gears 2**

- Simple and compound trains
- Planetary train
- Differential unit
- Applications

• **Gear stress analysis & design Gears 3**

- **Common forms of gear failure**
- **Gear force analysis**
- **AGMA gear stress analysis and design**

Future geared turbofan Nissan Leaf gearbox engine, like [RR Ultrafan](https://www.rolls-royce.com/innovation/ultrafan.aspx)

Planetary gearbox of mini hand drill

A SW model of WT gearbox

Outline of Gears 3

- **Gear stress analysis and design**
- Common forms of gear failure **Part 1:**
	- Gear force analysis
- Basic equations of gear **bending and contact stresses Part 2:**
- AGMA based gear stress analysis and design o **AGMA bending & contact stress** calculations o**AGMA allowable bending & contact stresses** of a chosen material o General gear design procedure **Part 3:**

Gears 3 Part 1

– A worked example **Part 4:**

Common forms of gear failure

Bending fatigue (due to cyclic bending stress at tooth root)

Scuffing (adhesive wear which instantly damages tooth surfaces in relative motion)

Pitting (common gear failure caused **by surface damage from cyclic contact stress**)

[http://machinedesign.com/article/recognizing-gear-](http://machinedesign.com/article/recognizing-gear-failures-0621)

[failures-0621](http://machinedesign.com/article/recognizing-gear-failures-0621)

A **1.5MW WT**, Portsmouth, RI, **Gearbox failed aft 3yrs** operation with a **20yrs design life**.

Gearbox configuration: 2 planetary stages + 1 stage of parallel gears with a ratio of 1:120 to convert **17rpm** from rotor to **2000rpm** of generator

<https://www.wind-watch.org/documents/gearbox-failure-investigation/>

Gears 3 Part 1

Micropitting (**surface failure** due to use of surface hardened gears, small craters) 1st stage planetary ring

1st stage planetary ring

Key questions for gear design analysis

Gears 3 Part 1

- \triangleright What is the mechanism of forces transmitted and how to quantify them in gear meshing operations?
- ➢ What are the typical forms of stresses and how can they be accurately calculated?
	- ✓Methods of determining stresses under ideal conditions
	- \checkmark Considerations given to accommodate the effects of real working conditions
- \triangleright With selected material and manufacturing methods, how to quantify the strength or allowable stress of a gear train?

Gears 3 Part 1

Gear Design Calculation is based on force

Pitch Circle transmitted along the line of action at the Gear (2) **Pitch Point GEAR (2)** F_{21} n_{2} $\boldsymbol{\phi}$ **PITCH POINT** F_{12} Pitch Circle n_1 Pinion (1) Line of Action **PINION (1)** © 2000 DOUG WRIGHT, UWA

F21 – Force by the Gear (2) on Pinion (1)

Gears 3 Part 1

- = Force by Gear 2 on Pinion 1 Tangential F^T_{21}
- W_T = Transmitted load, i.e. $W_T = F_{21}^T$
- T_{a1} = Torque exerted by Shaft **a** on Pinion (1), i.e.

$$
T_{a1} = \frac{W_{T}d_{1}}{2} \qquad P = T_{a1}\omega_{1} \quad \text{or} \quad P = W_{T}V_{\frac{d_{1}}{2}}
$$

$$
V_{\frac{d_{1}}{2}} = \frac{d_{1}}{2}\omega_{1}, \qquad \omega = \frac{2\pi}{60}n(rpm)
$$

where, *P* is power (kW), *d1* is pitch diameter of the pinion (mm), *ω1* is pinion speed (rad/s) and *n1* is pinion speed (rpm).

$$
W_T = \frac{60 \times 10^3 P}{\pi d_1 n_1} (kN) \quad \text{or} \quad W_T = \frac{P}{V_{\frac{d_1}{2}}}
$$

Free Body Diagram: Forces acting on Pinion (1)

= Force by Pinion (1) on Gear (2) - Tangential F_{12}^T F_{12}^R = Force by Pinion (1) on Gear (2) - Radial F_{b2}^y = Force by Shaft **b** on Gear (2)-y Direction Tb1 F_{b2}^x = Force by Shaft **b** on Gear (2)–x Direction T_{h2} = Torque exerted by Shaft **b** on Gear (2) 2 2 $W_r d$ T_{i} $=$ $\frac{rr}{T}$ $_{b2}$ $=$ $W_T = F^T_{12}$

Transmitted load on Gear (2)

$$
W_T = \frac{60 \times 10^3 P}{\pi d_1 n_1} (kN) \quad \text{or} \quad W_T = \frac{P}{V_{\frac{d_1}{2}}}
$$

Free Body Diagram:

Worked example 1: transmitted load

For a pair of spur gears, the **module** for the pinion and gear is *m=2* mm. The **numbers of teeth** for the pinion and gear, are *N1=20* and **N2=40**, respectively . The rotating speed of the pinion is *ω1***=900** rpm (clockwise). The rated power for this gear set is *P***=0.94** kW.

Determine:

- 1) the speed and direction of rotation of the gear *n2,*
- 2) the transmitted load *WT* of the gear set.

Gears 3 Part 1

Worked example 1: solution

1) The speed and direction of the gear, *ω2***:**

Use the gear ratio equation:

$$
Z = \frac{\omega_1}{\omega_2} = -\frac{N_2}{N_1}
$$

$$
n_2 = -\frac{N_1}{N_2} n_1 = -\frac{20}{40} \times 900 = -450 \ (rpm)
$$

The direction of rotation of the gear is **anti-clockwise.**

2) The transmitted load, *WT:*

The pitch diameter $d_1 = mN_1 = 2 \times 20 = 40 (mm)$ of the pinion,

The transmitted load, **W**
$$
\tau
$$

$$
V_{\frac{d_1}{2}} = \frac{d_1}{2} \frac{2\pi}{60} n_1 = 1.85 \, \binom{m}{s}
$$

 $W_T =$ 60×10^3 P $\bm{\pi d_1 n_1}$ = $60 \times 10^3 \times 0.94$ $3.1416 \times 40 \times 900$ $= 0.5(kN)$ $W_T =$ $10^3 P$ V_{d_1} $\overline{2}$ = $10^3 \times 0.93$ 1.85 $= 502.7(N$

Gears 3

End of Part 1

Gears 3

Part 2

Key questions for gear design analysis

 \triangleright What is the mechanism of forces transmitted and how to quantify them in gear meshing operations?

Gears 3 Part 1

- ➢ What are the typical forms of stresses and how can they be accurately calculated?
	- ✓Methods of determining stresses under ideal conditions
	- \checkmark Considerations given to accommodate the effects of real working conditions
- \triangleright With selected material and manufacturing methods, how to quantify the strength or allowable stress of a gear train?

Gears 3 Part 2

Gear stress analysis

Tooth bending fatigue

Micro pitting

Force transmitted from the pinion to the gear

- Force is always normal to the meshing point along the **line of action**,
- which generates a **bending moment thus stress** at the root of the gear &
- a stress concentration called **contact stress** at the meshing point

Spur gear stress analysis

Gears 3 Part 2

Gears experience **two types of stresses**:

- **1. Bending stress** (at the root of tooth)
- **2. Contact stress** (on teeth faces) due to meshing

Standards for Gear Stress Analysis:

- **AGMA** (American Gear Manufacturers Association) **(ANSI/AGMA 2101-C95)** (~70 pages)
- **BS ISO 6336-1~6: 2006** (~300 pages)

Approach:

- 1. Calculate **maximum bending and contact stresses** in gears
- 2. Compare to **allowable bending and contact stresses** with a chosen gear material

In using **AGMA or BS/ISO** in gear design calculation, **it is important to**

- understand basic concepts & methods, important assumptions;
- be careful of many parameters (units) & empirical nature of affecting factors.

Basic equation for gear bending stress Gears 3 Part 2

Gear tooth may be simplified as a cantilever beam (**Lewis Bending Equation, 1892**)

Worst case assumption:

- **W^t (transmitted Load) applied at the top of tooth**
- **One pair of teeth in contact.**

Maximum Bending Stress:

$$
\sigma_b = \frac{M \cdot y}{I} = \frac{(W_t \cdot l) \cdot \left(\frac{t}{2}\right)}{\left(\frac{f \cdot t^3}{12}\right)} = \frac{6 \cdot W_t \cdot l}{f \cdot t^2}
$$

- $W_t =$ transmitted load
- $I =$ T^{nd} *moment of area*($I = \frac{J \cdot l}{12}$) 12 $I = \frac{f \cdot t^3}{ }$
- *l* = height of tooth
- *t* = thickness of tooth at flank
- *f* = face width of tooth

 σ_{b} =Maximum Bending Stress

Basic equation for gear bending stress

Rearrangement of the maximum bending stress

 $t/$ 2

 \mathcal{X}

*σb***=Maximum Bending Stress**

$$
\sigma_b = \frac{W_t}{FmY}
$$

- $W_t =$ transmitted load
- *F* = face width
- *m* = Module
- *Y* = geometry factor

Geometry factor *Y* accounts for stress concentration at root of tooth

Gears 3 Part 2

Basic equation for gear contact stress Gears 3 Part 2

Contact stress between two cylinders (Hertzian contact stress equation, 1882)

Basic equation for gear contact stress

Replacing *F* by *Wt/cos* and *l* by the **Face width** *F*

$$
\sigma_C = \left\{ \frac{W_t}{\pi F \cos \phi} \frac{\left[(1/r_1) + (1/r_2) \right]}{\left[(1 - v_1^2)/E_1 \right] + \left[(1 - v_2^2)/E_2 \right]} \right\}^{1/2}
$$

$$
p_{\text{max}} = \sqrt{\frac{F}{\pi l} \frac{\left(1/r_1 + 1/r_2\right)}{\left[(1 - \nu_1^2)/E_1 + \left(1 - \nu_2^2\right)/E_2\right]}}
$$

Gears 3 Part 2

r1 **,** *r²* are the instantaneous radii of curvature on the **pinion** and **gear tooth** at the **pitch point of contact**.

Introducing an elastic coefficient, *Ze* and replacing **1** and **2** by **P** and **G**:

$$
Z_e = \left\{ \frac{1}{\sqrt{\pi}} \left(\frac{1 - v_P^2}{E_P} + \frac{1 - v_G^2}{E_G} \right) \right\}^{1/2}
$$

Therefore, **maximum contact stress**

$$
\sigma_C = Z_e \left[\frac{W_t}{F \cos \phi} \left(\frac{1}{r_1} + \frac{1}{r_2} \right) \right]^{1/2}
$$

Gears 3

End of Part 2

Gears 3

Part 3

Key questions for gear design analysis

- \triangleright What is the mechanism of forces transmitted and how to quantify them in gear meshing operations?
	- ➢ What are the typical forms of stresses and how can they be accurately calculated?
		- ✓Methods of determining stresses under ideal conditions
		- \checkmark Considerations given to accommodate the effects of real working conditions **based on AGMA standard**
	- \triangleright With selected material and manufacturing methods, how to quantify the strength or allowable stress of a gear train?

Gears 3 Part 1

AGMA equations for **bending** stress (ANSI/AGMA 2101-C95)

J Y

F ^m

1

 $\bigl\ll_K K_{_B}$

Gear bending stress

 σ = Max bending stress (N/mm²)

 t ^{\sim} $O^{I\Lambda}V^{I\Lambda}S$

'

 W *K* $_K$ *K* $_K$ *K*

 W_t = Transmitted load (N)

 σ =

- *F* = Face width (mm)
- *m* = Module (mm)
- *YJ* = geometry factor including stress concentration
- *KO* **= overload factor**
- *K'V* **= dynamic factor**
- *KS* **= size factor**
- *KH* **= load-distribution factor**
- *KB* **= rim-thickness factor**

Gears 3 Part 3

AGMA equations for **bending** stress

$$
\sigma = W_{t} \widehat{K_{0}K_{v}} K_{s} \frac{1}{Fm} \frac{K_{H}K_{B}}{Y_{J}}
$$

KO = **overload factor**, to account for externally applied loads in excess of the nominal transmitted load W_t , $Ko=1$ \sim 2.75.

K'V = **dynamic factor**, to account for inaccuracies in manufacturing and meshing of gear teeth at different speeds.

$$
K'_V = \left(\frac{A + \sqrt{200V}}{A}\right)^B
$$
 where, $A = 50 + 56(1 - B)$ and $B = \frac{(12 - Q_V)^{2/3}}{4}$

V = velocity of gear (m/s);

QV = AGMA **transmission accuracy** level number,

3 ≤ *QV* ≤ 7 for most commercial quality gears, agricultural & plant machinery, etc.

8 ≤ *QV* ≤ 12 for precision quality gears, power tools & cars.

for all other conditions

l

AGMA equations for **bending** stress **Gears 3 Part 3**

$$
\sigma = W_t K_o K_v K_s \frac{1}{F m} \frac{K_H (K_p)}{(Y)}
$$

KB = **rim-thickness factor**, to account for adjustment of the estimated bending stress for the thin-rimmed gear, $K_B = 1$ when $tr/ht \ge 1.2$.

YJ = **geometry factor** for bending strength, a modified value for the Lewis form factor & stress concentration (also in **Appendix**). Number of teeth for geometry factor required

AGMA equations for **contact** stress (ANSI/AGMA 2101-C95)

Gear contact stress (pitting resistance)

$$
\sigma_C = \boxed{Z_e \sqrt{W_t K_o K_v K_s} \sqrt{\frac{K_H}{H_d}} \sqrt{\frac{Z_R}{Z_L}}}
$$

- *σc* = contact stress (MPa)
- W_t = transmitted load (N)
- $F =$ face width (mm)
- *dp* = pitch diameter(mm)
- *Ze* = elastic coefficient (MPa^{0.5})

KO = overload factor K' ^{\vee} $\frac{1}{2}$ dynamic factor $Ks =$ **size factor** $KH \neq$ load-distribution factor *ZR* **= surface condition factor** σ_c = contact stress (MPa)
 W_t = transmitted load (N)
 F = face width (mm)
 d_p = pitch diameter(mm)
 Ze = elastic coefficient (MPa^{0.5})
 \widehat{KO} = overload factor
 $K'V$ = dynamic factor
 Ks = size factor
 KH

Gears 3 Part 3

Maximum Contact Stress

AGMA equations for **contact** stress

$$
\sigma_C = \widehat{Z_e} \sqrt{W_t K_o K_v K_s \frac{K_H}{F d_p \Sigma_I}}
$$

$$
\sigma_C = \sqrt{\frac{W_t}{\pi F \cos \phi} \left[\frac{(\frac{1}{r_1}) + (\frac{1}{r_2})}{(\frac{1}{r_1})^2} \right] + \left[\frac{1}{r_2} \right] / E_2}
$$

Gears 3 Part 3

Ze = an **elastic coefficient** (MPa^{0.5}), directly from Hertzian equation

$$
Z_e = \left\{ \frac{1}{\pi} \left(\frac{1 - v_P^2}{E_P} + \frac{1 - v_G^2}{E_G} \right) \right\}^{1/2}
$$

$$
\sigma_C = Z_e \left[\frac{W_t}{F \cos \phi} \left(\frac{1}{r_1} + \frac{1}{r_2} \right) \right]^{1/2}
$$

ZR = **surface condition factor**, to account for surface finish, residual stress & work hardening.

(Standard surface conditions **have not yet been established**. When a detrimental surface finish effect is known to exist, **AGMA suggests a value of greater than 1, i.e. ZR≥1.)**

AGMA equations for **contact** stress

Gears 3 Part 3

Summary of AGMA gear **bending** and **contact Gears 3 Part 3** stress equations

• **AGMA equations for bending & contact stresses**

Bending stress
$$
\sigma = W_t K_o K_v K_s \frac{1}{F m} \frac{K_H K_B}{Y_J}
$$

Context stress
$$
\sigma_c = Z_e \sqrt{W_t K_o K_v' K_s \frac{K_H}{F d_p} \frac{Z_R}{Z_I}}
$$

Key questions for gear design analysis

- \triangleright What is the mechanism of forces transmitted and how to quantify them in gear meshing operations?
	- ➢ What are the typical forms of stresses and how can they be accurately calculated?
		- ✓Methods of determining stresses under ideal conditions
		- ✓Considerations given to accommodate the effects of real working conditions **based on GAMA standard**
	- \triangleright With selected material and manufacturing methods, how to quantify the strength or allowable stress of a gear train?

Gears 3 Part 1

AGMA **allowable bending stress** (ANSI/AGMA 2101-C95)

Gears 3 Part 3

AGMA equation for the **allowable bending stress**

$$
\sigma_{all} = \frac{\sigma_{FP}}{S_F} \frac{Y_N}{Y_{\theta} Y_Z}
$$

σFP **= allowable bending stress (MPa)**

- *SF* **= AGMA safety** (reserve) **factor (often in the range of** *SF***=1.5~2)**
- *YN* **= stress cycle or life factor**
- *Yθ* **= temperature factor**
- *YZ* **= reliability factor**

Note: *σFP* is the allowable bending stress (at specific test conditions) for a given material whereas *σall* is the modified allowable bending stress with the consideration of factors such as life *YN*, temperature *Yθ* and reliability *YZ*.

AGMA **allowable bending stress**

$$
\sigma_{all} = \frac{\left(\sigma_{FP}\right)}{S_F} \frac{Y_N}{Y_{\theta} Y_Z}
$$

σFP = **allowable bending stress** (MPa)

Tested at **10⁷** cycles and **99%** reliability, the **allowable bending stress** for **through hardened steels**

for **grade 1** steel gears: for **grade 2** steel gears: $\sigma_{FP} = 0.533H_B + 88.3(MPa)$ $= 0.533 H_{\rm B} + 88.3$ $\sigma_{FP} = 0.703 H_B + 113(MPa)$ $= 0.703 H_{B} + 113$

Tested at **10⁷** cycles and **99%** reliability, the **allowable bending stress** for **nitrided through hardened steels**

for **grade 1** steel gears:

 $\sigma_{FP} = 0.568 H_B + 83.8(MPa)$ for **grade 2** steel gears: $\sigma_{FP} = 0.749H_B + 110(MPa)$ $=$ $0.749H_{_B}$ $+110$

where, *HB* is the **Brinell hardness** (often in the range of $H_B = 160^{\circ}400$)

AGMA **allowable bending stress**

Reliability

factor Table

Number of load cycles, N

Gears 3 Part 3

Reliability | **Y**_z

0.5 0.70

0.90 0.85

0.99 1.00

YN = **life factor (stress-cycle factor)** for bending strength other than **10⁷** cycles (also in **Appendix**).

Yθ = **temperature factor**, for oil or gear temperature up to 120 \degree C, $Y\theta = 1$.

YZ = **reliability factor**, to account for the statistical distribution of failure of material by fatigue.

AGMA **allowable contact stress** (ANSI/AGMA 2101-C95)

Gears 2 Part 3

AGMA equation for the **allowable contact stress**

Z N W H HP C ^{*all* \overline{S}_H $\widetilde{Y_\theta Y}$} $\mathcal{\not\!{Z}}_{N}Z$ $S_{H}^{\mathcal{E}}\left(Y_{\theta}\right)$ σ $\sigma_{c,all} =$

σHP **= allowable contact stress (MPa)**

SH **= AGMA safety** (reserve) **factor (often in the range of** *SF***=1.5~2)**

ZN **= stress cycle or life factor**

Zw **≠ hardness ratio factor**

Y^θ = temperature factor

reliability factor

Similarly, *σHP* is the **allowable contact stress** for a given material whereas *σC,all* is the **modified allowable contact stress** with the consideration of a number of factors as given above.

Gears 3 Part 3

AGMA **allowable contact stress**

$$
\sigma_{C,all} = \frac{\sigma_{HP}}{S_H} \frac{Z_N Z_W}{Y_{\theta} Y_Z}
$$

σHP = **allowable contact stress** (MPa)

Tested at **10⁷** cycles and **99%** reliability, the **allowable contact stress** for **through hardened steels**

for **grade 1** steel gears:

$$
\sigma_{HP} = 2.22H_B + 200(MPa)
$$

for **grade 2** steel gears:

$$
\sigma_{HP} = 2.41H_B + 237(MPa)
$$

Note: between **250 HB and up to 450 HB** surface hardness can be obtained by throughhardening and Nitriding for **AISI 4340 and 4140 gear steels**.

AGMA **allowable contact stress**

$$
\sigma_{c,all} = \frac{\sigma_{HP}}{S_H} \frac{Z_N Z_W}{Y_{\theta} Y_Z}
$$

ZN = **life factor (stress-cycle factor)** for pitting resistance other than **10⁷** cycles (also in **Appendix**)

ZW = **hardness ratio factor**, to account for different hardness of the pinion & gear (**only for gear,** *i.e. Zw = 1 for pinion*).

Gears 3 Part 3

$$
Z_W = 1 + A'(m_G - 1)
$$

 $\left[3.98\times10^{-3}\right]\frac{H_{BP}}{H}$ $\left[-8.29\times10^{-3}\right]$ \int \backslash \parallel $\overline{}$ \setminus $\frac{1}{2}$ 0.00 $\frac{10^{-3}}{2}$ $= 8.98 \times$ *B G B P H H A* where, for $1.2 \leq | \frac{1 - BP}{P}| \leq 1.7$ $\overline{}$ \int \backslash $\overline{}$ $\overline{}$ \setminus $\bigg($ \leq *BG BP H H*

where, HBP & HBG are the Brinell hardness of the **pinion** & **gear** and, *G* G $^ ^{}$ $^{}$ *N* $m_{\scriptscriptstyle \sim} =$

P

Summary of AGMA **bending and contact stress analysis equations Gears 3 Part 3**

• **AGMA equations for bending & contact stresses**

Bending stress
$$
\sigma = W_t K_o K_v K_s \frac{1}{F m} \frac{K_H K_B}{Y_J}
$$

Content stress
$$
\sigma_c = Z_e \sqrt{W_t K_o K_v K_s \frac{K_H}{F d_p} \frac{Z_R}{Z_I}}
$$

• **AGMA equations for allowable bending & contact stresses**

\nAllowable bending stress\n
$$
\sigma_{all} = \frac{\sigma_{FP}}{S_F} \frac{Y_N}{Y_{\theta} Y_Z}
$$
\n
$$
\sigma \leq \sigma_{all}
$$
\n

\n\nAllowable contact stress\n
$$
\sigma_{c,all} = \frac{\sigma_{HP}}{S_H} \frac{Z_N Z_W}{Y_{\theta} Y_Z}
$$
\n
$$
\sigma_c \leq \sigma_{c,all}
$$
\n

Key questions for gear design analysis

- \triangleright What is the mechanism of forces transmitted and how to quantify them in gear meshing operations?
	- ➢ What are the typical forms of stresses and how can they be accurately calculated?
		- ✓Methods of determining stresses under ideal conditions
		- ✓Considerations given to accommodate the effects of real working conditions **based on GAMA standard**
	- \triangleright With selected material and manufacturing methods, how to quantify the strength or allowable stress of a gear train?

A general procedure of gear design analysis

- 1) **Understand requirements** of function, power and speed, reliability, life, mounting & operation conditions.
- 2) **Select suitable gear types & trains**, e.g. simple and compound train, planetary train or differential unit (covered in the session Gears 2).
- 3) **Determine** numbers of teeth, gear ratio.
- 4) **Calculate** torque, **choose** a module, face width and **determine** pitch circle diameter.
- 5) **Select** a suitable material and hardness achieved by heat treatment.
- 6) **Calculate gear bending and contact stresses** using **AGMA** or **BS/ISO** standards.
	- \checkmark Gear force analysis (transmitted load)
	- ✓ Calculation of gear **bending & contact stresses** & **allowable stresses**
- 7) If *Ϭ ≤ Ϭall* and *Ϭc≤Ϭc,all*, acceptable; if not, go back to **4)** or **5)** and iterate

Normally a number of **iterations** of design & analysis are necessary to reach a satisfactory or optimum design solution.

Quiz: **True or False** to each of the following statements **Gears 3**

- **A. Scuffing is a form of adhesive wear commonly caused by lack of lubrication in high speed gear system**.
- **B. Transmitted load is the radial component of the exerted force in a pair of spur gears.**
- **C. Gear bending stress calculation is based on Hertzian contact theory.**
- **D. Contact stress is localised stresses created between two curved bodies under loading.**
- **E. In gear design analysis, AGMA standard is commonly used to calculate gear bending and contact stresses in operation conditions.**
- **F. AGMA allowable bending and contact stresses are dependent upon chosen material, treatment and other operational conditions.**

Quiz: **True or False** to each of the following statements **Gears 3**

- **A. Scuffing is a form of adhesive wear commonly caused by lack of lubrication in high speed gear system**.
- **B. Transmitted load is the radial component of the exerted force in a pair of spur gears. (false)**
- **C. Gear bending stress calculation is based on Hertzian contact theory.**
- **D. Contact stress is localised stresses created between two curved bodies under loading. (true)**
- **E. In gear design analysis, AGMA standard is commonly used to calculate gear bending and contact stresses. (true)**
- **F. AGMA allowable bending and contact stresses are only dependent upon chosen material.**

(true)

(false)

Revision questions

• What are the common forms of gear failure and what are the root causes for these failures?

Gears 3

- Can you calculate the transmitted load of a gear system with given power and rotating speed?
- Can you explain the general methods used to calculate gear bending and contact stresses?
- What is the main difference between the basic Lewis bending and Hertz contact stress equations and those used in AGMA standard?
- Why are so many factors, e.g. life factors, *YN* or *ZN*, used in calculating the AGMA allowable bending and contact stresses?
- In gear design, what would you do if the calculated bending or contact stress is larger than the allowable bending or contact stress?

Gear Design Resources

- **Budynas, R.C., Nisbett, J.K., 2015, Shigley's Mechanical Engineering Design, 10th edition, McGraw-Hill** (TJ230 SHI)
	- **‒ Chapter 14 Spur and Helical Gears**
- **Shigley, J.E., Mischke, C.R., Budynas, R.G., 2003. Mechanical Engineering Design, 7th edition, McGraw-Hill** (TJ230 SHI)
	- **Chapter 14 Spur and Helical Gears**
- **Childs, R.N., 2014. Mechanical Design Engineering Handbook, Elsevier,** (TJ230 CHI)
	- **Chapter 9 Spur and Helical Gear Stressing (***online version available via NUSearch***)**
- ANSI/AGMA 2101-C95, Fundamental rating factors and calculation methods for involute spur gear and helical gear teeth, (Metric edition of ANSI/AGMA 2001-C95)
- BS ISO 6336-1~6: 2006, British and ISO Standards of gear load capacity, calculation of tooth bending strength & surface durability, strength and quality of materials (*available via BSI website*).

Gears 3

End of Part 3

Gears 3

Part 4

Worked example 2: A case study of gear stress analysis and design*

Gears 2 Part 4

*** This case study is an extract from** Childs' Book on *Mechanical Design Engineering Handbook*, 2014, Elsevier, Ch9, pp386-391 (available online via NUSearch)

➢ **Calculate AGMA bending and contact stresses and the factors of safety (reserve factor)** for both the pinion and gear of a simple spur gear drive.

Design specifications:

- **Numbers of teeth** for both pinion and gear are *NP***=18,** *NG***=50** with a **pressure angle φ=20°.**
- The **module** is *m***=2.5 mm** and the **face width** is *F***=30 mm**.
- The **rotating speed** of the pinion is *np***=1425 rpm** and the gear drive is to transmit a **power** of **P=3 kW** under smooth running conditions.
- The gear material is **grade 1 steel** with the **Brinell hardness** to be *HB***=240** and **200** for the pinion and gear, respectively.
- The gears are manufactured to *QV***=6** AGMA accuracy and the teeth are **uncrowned**.
- The gear drive is required to have a **life** of **10⁸ cycles** and **90% reliability.**
- The gears are straddle mounted within an enclosed unit.

Worked example 2: A case study of gear stress analysis and design*

*** This case study is an extract from** Childs' Book on *Mechanical Design Engineering Handbook*, 2014, Elsevier, Ch9, pp386-391 (available online via NUSearch)

Design specifications:

- **Numbers of teeth:** *NP***=18,** *NG***=50**; **pressure angle: φ=20°**
- M**odule:** *m***=2.5 mm; face width:** *F***=30 mm**
- **Rotating speed of the pinion:** *np***=1425 rpm; power**: *P***=3 kW**

See separate Handouts available on Moodle for detailed calculations.

Be aware there is a corrected error in gear contact stress result.

Gears 3 Part 4a

Solidworks assembly model without details of shafts, keys/keyways & bearings, etc

Gears 3

End of session

Number of teeth for which geometry factor is desired **Number of teeth**

Appendix: AGMA Charts of gear bending and contact University of Nottingham **stress factors** UK | CHINA | MALAYSIA

Artist

Appendix: AGMA Charts of gear bending and contact University of Nottingham **stress factors** UK | CHINA | MALAYSIA

AF

where *ZN* = **life factor (or stress cycle factor)** for **allowable contact stress**

